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Bounded Arithmetic



¥ >-formulas

Ls, is a finite language containing

e constants 0,1

e unary |3],[x|(:= [logy x| + 1 in N)

e binary x + y, x -y, x#y(:= 2XI'V in N)
e binary x <y

(occurrence of ) quantifier @x < t(y) is called bounded,
Qx < |t(y)] is called sharply bounded

Yh— I_IO is the class of sharply bounded formulas
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| is a closure of M? over A, V, @x < [t(¥)| and 3x < t(¥)
L is a closure of 2 over A, V, Qx < [t(y)| and Vx < t(¥)



Theories T}

e The base theory BASIC consists of 32 axioms describing basic
properties of Lsg,

1 =1
12 a<b—lal < bl

13. |a#tb| = |a| - |b| +1

14. O#a =1

15, a # 0 — (1#Q2a) = 2(1#a) A 1#Q2a + 1) = 2(1#a))
16. a#th = bHa

17. |a| = |b| — a#c = bike

18. la| = |b| + || — at#td = (b#d) - (c#d)

19. a<a+b

lLasb—asb+1 20 @<bra#b)— Qa+1<2bA2+1#2b)
2. a#a+1 2. a+b=b+a
3 0<a 22 a+0=a

- 23 a+ b+ =(@+b+1
4 (a<bhra#b)—>a+1<b 24 @+b)+c=a+b+o)
5. a#0—>2a#0 25. atb<a+c—>bsc

26 a-0=0

6 asbvb=a 27 a-b+D=a-b+a
7. (@a<bAb<a)—>a=b 28 a-b=b-a
8 (a<bAb<c)—a<c 29 a-(b+c)=(@-b)+(@-c)
9. 10[=0 30. 1sa—(@absa-c)=(b=0)

31 a#0— lal = |l@/2)]|+1
10. a#0— (2a]=lal+1A2a+1|=la|+1) 32 a=|(b/2))=Qa=bv2a+1=b)

e T is BASIC augmeneted by induction scheme for Zf’—formulas



Relativized theories T}(R)

e Ls,(R) is an extension of Lg, by a symbol R

e Classes Z2(R) and M?(R) are defined analogously to the
unrelativized case

e Theory Ti(R) is BASIC augmented by induction scheme for
¥ 2(R)-formulas (no specific axioms for R)



Combinatorial principles



ontoPHP and injPHP principles

For binary R, injPHP(R) is
Jda# b< pdc< h(R(a,b) AR(a,c))
V
da<p3db#c<h(R(ab)AR(ac))
V
Jda < pVb < h(=R(a, b)),
and ontoPHP(R) is
injPHP(R)
V
db < hVa < p (—R(a, b)),

where p and h are free variables in both formulas above.



Ajtai’s theorem

The crucial classical result concerning independence in bounded
arithmetic is the following statement, originally established by
Ajtai, and later improved by Krajicek, Pudldk, Woods and Pitassi,
Beame, Impagliazzo

T2(R) ¥ ontoPHP(R)



MIN principle

For binary <, MIN(<) is

da<n(a<a)
V
Jda#£b<n(aAbAb#a)

V
Ja,b,c<n(a<bAb<cAa#c)
vV
Jda<nVb#a<n(a<b),

where n is a free variable in the above formula.



Application of Theorem of Riis

Applying Theorem of Riis one can immediately derive
T3 (=) ¥ MIN(=),
although this time it holds that

T2(<) F MIN(<)



Our results




Theorem
TH(=) + injPHP(A2(<)) ¥ MIN(=<)

e AP(=) stands for the class of binary formulas naturally
corresponding to p-time

e proof is model theoretic, we start with a countable
non-standard model of true arithmetic and then expand it by
suitably interpreting < relation

e The construction can be viewed in terms of simple pebble
game, or as forcing



Proof sketch

e Start with non-standard model M and pick non-standard
number n

e Consider a game between Alice, Bob and Cecile which take
turn in building a chain on [0, -, n), each extending the
previous by at most |n|€-elements for some standard C

e Alice tries to make sure that the resulting < is a total
ordering on [0, - - -, n) with no minimal element

e Bob tries to make sure that the resulting expansion satisfies
T3(=)

e Cecile tries to make sure that the resulting expansion satisfies
injPHP(A%(<))



e The proof can be naturally cast as a forcing argument in the
framework of partially definable forcing of Atserias and Miiller

e In fact, the poset is exactly the one used by argument of Riis
(i.e. poset of small conditions)

e The biggest difference is that we provide additional
combinatorial analysis of the construction

10



Extensions

The same argument can be used to give additional independence
results

)) ¥ DLO(=)
)) ¥ DiscLO(=)
)) ¥ TOUR(E)
£)) ¥ dWPHP(f)
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What's next

e Undestand the difference between ontoPHP(R) and
injPHP(R), in particualr is it possible to prove
T}(R) 4 ontoPHP(A%(R)) ¥ injPHP(R) using techniques
developed in the current work

e Extract natural Riis-like criterion for T3(R) + injPHP(A2(R))

e Derive unreducibility between corresponding TFNP and TFX5
classes using the framework of typical forcing of Miiller

e Adapt methods to the following version of the pigeonhole
principle

da# b < pdc < h(R(a,b) AR(a,c))
V
Jda < pVb < h(—R(a,b))
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