On the parameterized complexity of Ay truth

Moritz Muller

joint with Yijia Chen and Keita Yokoyama

Ao truth

Ao-TRUTH
Input: n € N in unary and a Ag-formula ¢(x) with n >> |p|.
Problem: is o(n) true?

Ao truth

p-Do-TRUTH
Input: n € N in unary and a Ag-formula ¢(x).
Problem: is o(n) true?
Parameter: k :=|¢|.

eventually efficient 7

there exist computable h: N — N and efficient A
that solves Ao-TRUTH on instances with n > h(k).

Ao truth

p-Ao-TRUTH
Input: n € N in unary and a Aop-formula ¢(x).
Problem: is o(n) true?
Parameter: k :=|y|.

eventually efficient 7

there exist computable h: N — N and efficient A
that solves Ag-TRUTH on instances with n > h(k).

Examples
eventually P iff decidable in time f(k) - n°®)
for some computable f : N — N.

eventually L iff decidable in space f(k) + O(logn)
for some computable f : N — N.

Parameterized complexity

Parameterized problem (Q, k)

- classical problem @ C {0,1}*
- parameterization « : {0,1}* — N AC%-computable.

Write n := |z| and k := k(x), the parameter of x.

Parameterized complexity

Parameterized problem (Q, k)

- classical problem @ C {0,1}*
- parameterization « : {0,1}* — N AC%-computable.

Write n := |z| and k := k(x), the parameter of x.

paralL det. space f(k) + O(log(n)) for some computable f
paraNL nondet. space f(k) + O(log(n)) for some computable f
FPT det. time f(k) - nP® for some computable f
paraNP nondet. time f(k) - n9D) for some computable f

paraL C paraNL C FPT C paraNP

Ao truth

p-Do-TRUTH
Input: n € N in unary and a Ag-formula ¢(x).
Problem: is o(n) true?
Parameter: k = |¢|.

e decidable in det. space f(k)log(n) for some computable f: N — N

Ao truth

p-Do-TRUTH
Input: n € N in unary and a Ag-formula ¢(x).
Problem: is o(n) true?
Parameter: k = |¢|.

e decidable in det. space f(k)log(n) for some computable f: N — N

Questions

1: det. space f(k) + O(log(n)) for some computable f7?
2: nondet. space f(k) + O(log(n)) for some computable f7?
3: det. time f(k) - nP® for some computable f?
4: nondet. time f(k) - n®® for some computable 7

Ao truth

p-Do-TRUTH
Input: n € N in unary and a Ag-formula ¢(x).
Problem: is o(n) true?
Parameter: k = |¢|.

e decidable in det. space f(k)log(n) for some computable f: N — N

Questions

p-Do-TRUTH € paralL ?
p-Do-TRUTH € paraNL 7
p-DNo-TRUTH € FPT 7
p-Do-TRUTH € paraNP 7

BN

Ao truth

p-DNo-TRUTH
Input: n € N in unary and a Aop-formula ¢(x).
Problem: is o(n) true?
Parameter: k = |y|.

e decidable in det. space f(k)log(n) for some computable f: N — N

Theorem

1: p-Ao-TRUTH € paraL = LINSPACE ¢ LINH
2. p-Aog-TRUTH € paraNL = NLINSPACE ¢ LINH
3. p-Ao-TRUTH € FPT = E ¢ LINH

4: p-Ao-TRUTH € paraNP = NE ¢ LINH

LINH C LINSPACE C NLINSPACE C E C NE

Proof outline

Two ingredients:

An analysis of the parameterized halting problem

p-HALT
Input: ne€ N in unary and a NTM M.
Problem: does M accept the empty input in at most n steps?
Parameter: k := |M].

Proof outline

Two ingredients:

An analysis of the parameterized halting problem

p-HALT =
Input: ne€ N in unary and a NTM M.
Problem: does M accept the empty input in exactly n steps?
Parameter: k := |M].

Proof outline
Two ingredients:

An analysis of the parameterized halting problem

p-HALT =
Input: ne€ N in unary and a NTM M.
Problem: does M accept the empty input in exactly n steps?
Parameter: k := |M].

Theorem
(a) p-HALT= € paraACP iff NE C LINH
(b) p-HALT = is the hardest almost tally problem in paraNP.

Proof outline
Two ingredients:

An analysis of the parameterized halting problem

p-HALT =
Input: ne€ N in unary and a NTM M.
Problem: does M accept the empty input in exactly n steps?
Parameter: k := |M].

Theorem
(a) p-HALT = € paraACP iff NE C LINH
(b) p-HALT= is the hardest almost tally problem in paraNP.

A lower bound

Theorem p-Ag-TRUTH ¢ paraAC?.

Background on parameterized halting

Conjecture

p-HALT
Input: ne€ N in unary and a NTM M.
Problem: does M accept the empty input in at most n steps?
Parameter: k= |M].

is not decidable in time nf(®) for some f: N — N.

Background on parameterized halting

Conjecture

p-HALT
Input: ne€ N in unary and a NTM M.
Problem: does M accept the empty input in at most n steps?
Parameter: k= |M].

is not decidable in time nf(®) for some f: N — N.

Chen, Flum 2009/10
... Iff LFP;,, is not a logic for PTIME.

... Iff there are no p-optimal propositional proof systems.

Open p-HALT ¢ paraAC® ?

paraACP°

Barrington, Immerman, Straubing 1990
(Q, k) € paraAC®
Iff @ is eventually FO:

there are a first-order sentence ¢ and a computable A : N — N such that

for all z € {0,1}* with |z| > h(k(x)): x €Q <— S(x) = .

String structure Let x =x0---xp—1 € {0,1}" for n > 1.

S(I) — ([n]7 _|_n7 Xn? <n, 07 1) ONEn)

ONE" = {i€ [n] |z =1}

"= {G,5k) € P+ =k}
etc.

LY, = {+, x,0,1,<} with ternary relation symbols 4, x.

p-HALT= € paraAC® < NE C LINH

p-HALT= € paraAC® < NE C LINH

For « € {0, 1}" let
num(xz) := the number with binary expansion 1.
For @ C{0,1}* let

un(Q) = {1Mm@) | ¢ € Q}.

Allender, Gore 1990
Q € LINH < un(Q) € ACO.

p-HALT= € paraAC® < NE C LINH

Assume NE C LINH. Consider

Q
Input: n € N in binary and a NTM M.

Problem: does M accept the empty input in exactly n steps?

Then Q € LINH. Hence ACP? contains

un(Q) = {1MUmMnM) M accepts the empty input in exactly n steps}

Then p-HALT = € paraAC? because
<1n,M> — 1num(<n,M))

is a suitable reduction to un(Q).

p-HALT= € paraAC® < NE C LINH

Assume p-HALT = € paraAC®. Let Q € NE.
Want: un(Q) € ACP,

Choose c € N and an NTM M for @ in time num(x)¢ — 2|z|

p-HALT= € paraAC® < NE C LINH

Assume p-HALT = € paraAC®. Let Q € NE.
Want: un(Q) € ACP,

Choose c € N and an NTM M for @ in time num(x)¢ — 2|z|

Define M* on the empty input:

guess y € {0,1}* in exactly 2|y| steps.

run M on y.

if M rejects, reject.

make dummy steps to complete num(y)¢ steps.

A

accept.

p-HALT= € paraAC® < NE C LINH

Assume p-HALT = € paraAC®. Let Q € NE.
Want: un(Q) € ACP,

Choose ce N and an NTM M for @ in time num(z)® — 2|z|
Define M* on the empty input:
1: guess y € {0,1}* in exactly 2|y| steps.

2: run M on y.
3: if M rejects, reject.
4: make dummy steps to complete num(y)° steps.
5: accept.
Then

17UmE) e yn(Q) <= M* accepts in exactly num(z)®+ 1 steps.

Since p-HALT = € paraAC?® and M* is a fixed machine: r.h.s. is ACO.

p-HALT = is the hardest almost tally problem in paraNP.

need: workable notion of reduction that preserves paraAC?O.

p-HALT = is the hardest almost tally problem in paraNP.
need: workable notion of reduction that preserves paraAC?O.

r:{0,1}* — {0,1}* is an eventually definable reduction (Q, k) to (Q', k') if:

(@) [r(z)] > |a|D.

(b) K or < f ok for some computable f: N — N.
)zxe@ <— r(z)eq.

(d) exist computable h, interpretation I st:

S(x) =2 S(r(x)).
for every z € {0, 1}* with |z| > h(x(x)).
Lemma

This reducibility is transitive and preserves paraAC?O.

p-HALT = is the hardest almost tally problem in paraNP.

(Q, k) is almost tally if for some computable f: N — N:
- Q C{(1"z)|neNze{0,1}}
— || < f(r({1™ z))).

e p-HALT =, p-HALT, p-Ao-TRUTH are almost tally.

p-HALT = is the hardest almost tally problem in paraNP.

(Q, k) is almost tally if for some computable f: N — N:
- Q C{(1"z)|neNze{0,1}}
— || < f(r({1™ z))).

e p-HALT =, p-HALT, p-Ao-TRUTH are almost tally.

Lemma

For every almost tally problem in paraNP there is an eventually definable
reduction to p-HALT —.

p-HALT = is the hardest almost tally problem in paraNP.

(Q, k) is almost tally if for some computable f: N — N:
- Q C{(1"z)|neNze{0,1}}
— || < f(r({1™ z))).

e p-HALT =, p-HALT, p-Ao-TRUTH are almost tally.

Lemma

For every almost tally problem in paraNP there is an eventually definable
reduction to p-HALT —.

Corollary

NE C LINH iff every almost tally problem in paraNP is in paraACP.

p-Do-TRUTH ¢ paraAcCP.

Otherwise model-checking arithmetic is in paraACP:

p-MC(L,)
Input: n > 2 in unary and an L -sentence ¢.
Problem: nj=¢ 7
Parameter: k :=|p|.

p-Do-TRUTH ¢ paraAcCP.

Otherwise model-checking arithmetic is in paraACP:

p-MC(L,)
Input: n > 2 in unary and an L -sentence ¢.
Problem: nj=¢ 7
Parameter: k :=|p|.

Thus there are a sentence sat and a computable h : N — N such that

nEe = S{1"¢)) F sat
for all n > h(num(y)).

p-Do-TRUTH ¢ paraAcCP.

Otherwise model-checking arithmetic is in paraACP:

p-MC(L,)
Input: n > 2 in unary and an L -sentence ¢.
Problem: nj=¢ 7
Parameter: k :=|p|.

Thus there are a sentence sat and a computable A : N — N such that
ni=e << S{1%¢)) = sat

for all n > h(num(y)).

Construct a L{,-formula true(x) such that

nkE=e <= np= true(num(yp))
for all n > h(num(y)).

p-Do-TRUTH ¢ paraAcCP.

Then
N = “h(num(p)) <y"' — (¢ < true<!(num(yp)).)

p-Do-TRUTH ¢ paraAcCP.

Then
N = “h(num(p)) <y"' — (¢ < true<!(num(yp)).)
Let M be nonstandard and a € M \ N. Then

M = o= < true~*(num(yp))
for all L -sentences .

Contradiction by standard diagonalization.

Upper bounds

T heorem

If p-Ao-TRUTH € paraNP, then NE ¢ LINH.

Upper bounds

T heorem

If p-Ao-TRUTH € paraNP, then NE ¢ LINH.

If p-Ao-TRUTH € FPT, then E € LINH.
If p-Ao-TRUTH € paraNL, then NLINSPACE ¢ LINH.
If p-Ao-TRUTH € paraL, then LINSPACE ¢ LINH.

LINH C LINSPACE C NLINSPACE C E C NE

The MRDP theorem

Question Does IAg prove MRDP?
for every o(Z) € Ao there are terms p(Z,vy),q(Z,y) st IAg proves
p(z) < Fyp(@,y) =q(Z,9).
Wilkie 1980 Then NP = coNP.

Gaifman, Dimitracopoulos 1982 [Ap+exp proves MRDP.

The MRDP theorem

Question Does IAg prove MRDP?
for every o(Z) € Ao there are terms p(Z,vy),q(Z,y) st IAg proves
p(z) < Fyp(@,y) =q(Z,9).
Wilkie 1980 Then NP = coNP.

Gaifman, Dimitracopoulos 1982 [Ap+exp proves MRDP.

Conjecture IAg proves MRDP for small numbers:

for every o(x) € Ao there are terms p(z,y),q(xz,y) st 1A proves
2" <z = (e(@) «< Iy plz,y) =q(=z,7)).

Intuitively Much weaker than IAg-provability.

The MRDP theorem

Question Does IAg prove MRDP?
for every o(z) € Ao there are terms p(Z,y),q(Z,y) st 1A proves

e(z) « Fy p(z,y) =q(z,y).
Wilkie 1980 Then NP = coNP.
Gaifman, Dimitracopoulos 1982 [Ap+exp proves MRDP.

Conjecture IAg proves MRDP for small numbers:

for every o(x) € Ag there are terms p(x,y),q(x,y) st IAg proves
2" <z — (e(@) < 3y plz,y) =q(=z,7)).

Intuitively Much weaker than IAgp-provability.

T heorem
Then NE ¢ LINH.

The MRDP theorem

Theorem Let T be a true, c.e. lli-theory.

It T' proves MRDP for small numbers, then NE ¢ LINH.

The MRDP theorem

Theorem Let T be a true, c.e. ll1-theory.

If T' proves MRDP for small numbers, then NE ¢ LINH.

Proof Parikh's Theorem implies:

for every o(x) there are p(x,7),q(x,y),r(x, z) such that T proves
2=z = (p(x) < Fy<r(z,2) p(z,79) = q(=z,7))

Solve p-Ap-TRUTH on input (1", p(x)):

1: compute p,q,r from ¢ as above. // since T is c.e..
2: guess m < r(n,2™). // length O(|y| - |r| - n)
3: check p(n,m) = q(n,m) // time poly [p|-|q|-|r|-n

Hence p-Ag-TRUTH € paraNP, so NE € LINH.

Relaxing uniformity

XACP contains (Q, k) if every slice is in ACO.

XACY

const .and depth independent of the slice.

0 0 0
paraACY C XAC_ .+ © XAC

Relaxing uniformity

XACP contains (Q, k) if every slice is in ACO.

XACO ...and depth independent of the slice.

const

0 0 0
paraACY C XAC_ .+ © XAC

Theorem

p-HALT € XACZ, o+

p-HALT= € XACY . iff NE C LINH.
p-Do-TRUTH € XACY___. iff LINH collapses.

Problem comparison

T

p-HALT

Corollary

p-HALT— # p-HALT unless NE C LINH.

Problem comparison

p-HALT = £

T

p-HALT

Corollary

p-HALT— # p-HALT unless NE C LINH.

p-HALT— # p-Ao-TRUTH.

p-Ao-TRUTH

Problem comparison

p-SPEC
/! AN
p-HALT = =% p-Do-TRUTH
T
p-HALT

Corollary
p-HALT= #% p-HALT unless NE C LINH.

p-HALT— # p-Ao-TRUTH.

p-SPEC
Input: n € N in unary and a first-order sentence .

Problem: does ¢ have a model of size n?
Parameter: k :=|p|.

