On the parameterized complexity of Δ_0 truth

Moritz Müller

joint with Yijia Chen and Keita Yokoyama

 $\Delta_0 ext{-}\mathsf{TRUTH}$

Input: $n \in \mathbb{N}$ in unary and a Δ_0 -formula $\varphi(x)$ with $n >> |\varphi|$.

Problem: is $\varphi(n)$ true?

```
p\text{-}\Delta_0\text{-}\mathsf{TRUTH} Input: n\in\mathbb{N} in unary and a \Delta_0\text{-}\mathsf{formula}\ \varphi(x). Problem: is \varphi(n) true? Parameter: k:=|\varphi|. eventually efficient? there exist computable h:\mathbb{N}\to\mathbb{N} and efficient \mathbb{A} that solves \Delta_0\text{-}\mathsf{TRUTH} on instances with n>h(k).
```

```
p-\Delta_0-TRUTH
   Input: n \in \mathbb{N} in unary and a \Delta_0-formula \varphi(x).
   Problem: is \varphi(n) true?
   Parameter: k := |\varphi|.
eventually efficient?
     there exist computable h: \mathbb{N} \to \mathbb{N} and efficient A
     that solves \Delta_0-TRUTH on instances with n > h(k).
Examples
eventually P iff decidable in time f(k) \cdot n^{O(1)}
                      for some computable f: \mathbb{N} \to \mathbb{N}.
eventually L iff decidable in space f(k) + O(\log n)
                      for some computable f: \mathbb{N} \to \mathbb{N}.
```

Parameterized complexity

Parameterized problem (Q, κ)

- classical problem $Q\subseteq\{0,1\}^*$ parameterization $\kappa:\{0,1\}^*\to\mathbb{N}$ AC^0-computable.

Write n := |x| and $k := \kappa(x)$, the parameter of x.

Parameterized complexity

Parameterized problem (Q, κ)

- classical problem $Q \subseteq \{0,1\}^*$
- parameterization $\kappa: \{0,1\}^* \to \mathbb{N}$ AC⁰-computable.

Write n := |x| and $k := \kappa(x)$, the parameter of x.

```
paral det. space f(k) + O(\log(n)) for some computable f paraNL nondet. space f(k) + O(\log(n)) for some computable f for some computable f paraNP nondet. time f(k) \cdot n^{O(1)} for some computable f
```

$$paraL \subseteq paraNL \subseteq FPT \subseteq paraNP$$

p- Δ_0 -TRUTH

Input: $n \in \mathbb{N}$ in unary and a Δ_0 -formula $\varphi(x)$.

Problem: is $\varphi(n)$ true?

Parameter: $k := |\varphi|$.

ullet decidable in det. space $f(k)\log(n)$ for some computable $f:\mathbb{N}\to\mathbb{N}$

p- Δ_0 -TRUTH

Input: $n \in \mathbb{N}$ in unary and a Δ_0 -formula $\varphi(x)$.

Problem: is $\varphi(n)$ true?

Parameter: $k := |\varphi|$.

• decidable in det. space $f(k) \log(n)$ for some computable $f : \mathbb{N} \to \mathbb{N}$

Questions

1: det. space $f(k) + O(\log(n))$ for some computable f?

2: nondet. space $f(k) + O(\log(n))$ for some computable f?

3: det. time $f(k) \cdot n^{O(1)}$ for some computable f?

4: nondet. time $f(k) \cdot n^{O(1)}$ for some computable f?

```
p-\Delta_0-TRUTH
```

Input: $n \in \mathbb{N}$ in unary and a Δ_0 -formula $\varphi(x)$.

Problem: is $\varphi(n)$ true?

Parameter: $k := |\varphi|$.

ullet decidable in det. space $f(k)\log(n)$ for some computable $f:\mathbb{N}\to\mathbb{N}$

Questions

- 1: p- Δ_0 -TRUTH \in paraL ?
- 2: p- Δ_0 -TRUTH \in paraNL ?
- 3: p- Δ_0 -TRUTH \in FPT ?
- 4: p- Δ_0 -TRUTH \in paraNP ?

```
p-\Delta_0-TRUTH
```

Input: $n \in \mathbb{N}$ in unary and a Δ_0 -formula $\varphi(x)$.

Problem: is $\varphi(n)$ true?

Parameter: $k := |\varphi|$.

 \bullet decidable in det. space $f(k) \log(n)$ for some computable $f: \mathbb{N} \to \mathbb{N}$

Theorem

```
1: p-\Delta_0-TRUTH \in paraL \Rightarrow LINSPACE \not\subseteq LINH
```

2:
$$p$$
- Δ_0 -TRUTH \in paraNL \Rightarrow NLINSPACE $\not\subseteq$ LINH

3:
$$p$$
- Δ_0 -TRUTH \in FPT \Rightarrow E $\not\subseteq$ LINH

4:
$$p$$
- Δ_0 -TRUTH \in paraNP \Rightarrow NE $\not\subseteq$ LINH

 $\mathsf{LINH} \subset \mathsf{LINSPACE} \subset \mathsf{NLINSPACE} \subset \mathsf{E} \subset \mathsf{NE}$

Two ingredients:

An analysis of the parameterized halting problem

 $p ext{-}\mathsf{HALT}$

Input: $n \in \mathbb{N}$ in unary and a NTM M.

Problem: does M accept the empty input in at most n steps?

Parameter: k := |M|.

Two ingredients:

An analysis of the parameterized halting problem

```
p-HALT=
```

Input: $n \in \mathbb{N}$ in unary and a NTM M.

Problem: does M accept the empty input in exactly n steps?

Parameter: k := |M|.

Two ingredients:

An analysis of the parameterized halting problem

p-HALT₌

Input: $n \in \mathbb{N}$ in unary and a NTM M.

Problem: does M accept the empty input in exactly n steps?

Parameter: k := |M|.

Theorem

- (a) p-HALT $_{=} \in paraAC^{0}$ iff NE $\subseteq LINH$
- (b) p-HALT= is the hardest almost tally problem in paraNP.

Two ingredients:

An analysis of the parameterized halting problem

p-HALT=

Input: $n \in \mathbb{N}$ in unary and a NTM M.

Problem: does M accept the empty input in exactly n steps?

Parameter: $k := |\mathbb{M}|$.

Theorem

- (a) p-HALT $_{=} \in paraAC^0$ iff NE $\subseteq LINH$
- (b) p-HALT= is the hardest almost tally problem in paraNP.

A lower bound

Theorem $p-\Delta_0$ -TRUTH $\not\in$ paraAC⁰.

Background on parameterized halting

Conjecture

```
p\text{-HALT} Input: n\in\mathbb{N} in unary and a NTM \mathbb{M}. Problem: does \mathbb{M} accept the empty input in at most n steps? Parameter: k:=|\mathbb{M}|.
```

is not decidable in time $n^{f(k)}$ for some $f: \mathbb{N} \to \mathbb{N}$.

Background on parameterized halting

Conjecture

```
p	ext{-}\mathsf{HALT}
```

Input: $n \in \mathbb{N}$ in unary and a NTM M.

Problem: does M accept the empty input in at most n steps?

Parameter: $k := |\mathbb{M}|$.

is not decidable in time $n^{f(k)}$ for some $f: \mathbb{N} \to \mathbb{N}$.

Chen, Flum 2009/10

 \dots iff LFP_{inv} is not a logic for PTIME.

 \dots iff there are no p-optimal propositional proof systems.

Open p-HALT $\not\in$ paraAC⁰ ?

paraAC⁰

Barrington, Immerman, Straubing 1990

 $(Q, \kappa) \in \mathsf{paraAC}^0$

iff Q is eventually FO:

there are a first-order sentence φ and a computable $h: \mathbb{N} \to \mathbb{N}$ such that for all $x \in \{0,1\}^*$ with $|x| \ge h(\kappa(x))$: $x \in Q \iff \mathcal{S}(x) \models \varphi$.

String structure Let $x = x_0 \cdots x_{n-1} \in \{0, 1\}^n$ for n > 1.

$$\mathcal{S}(x) = \left([n], +^n, \times^n, <^n, 0, 1, ONE^n \right)$$
 $ONE^n = \left\{ i \in [n] \mid x_i = 1 \right\}$
 $+^n = \left\{ (i, j, k) \in [n]^3 \mid i + j = k \right\}$ etc.

 $L_{ar}^{r} = \{+, \times, 0, 1, <\}$ with ternary relation symbols $+, \times$.

For $x \in \{0,1\}^*$ let

num(x) :=the number with binary expansion 1x.

For $Q \subseteq \{0,1\}^*$ let

$$un(Q) := \{1^{num(x)} \mid x \in Q\}.$$

Allender, Gore 1990

 $Q \in \mathsf{LINH} \iff \mathit{un}(Q) \in \mathsf{AC}^0.$

Assume $NE \subseteq LINH$. Consider

Q

Input: $n \in \mathbb{N}$ in binary and a NTM M.

Problem: does \mathbb{M} accept the empty input in exactly n steps?

Then $Q \in LINH$. Hence AC^0 contains

 $un(Q) = \{1^{num(\langle n, \mathbb{M} \rangle)} \mid \mathbb{M} \text{ accepts the empty input in exactly } n \text{ steps} \}$

Then p-HALT $_{=} \in paraAC^0$ because

$$\langle \mathbf{1}^n, \mathbb{M} \rangle \mapsto \mathbf{1}^{num(\langle n, \mathbb{M} \rangle)}$$

is a suitable reduction to un(Q).

Assume p-HALT= \in paraAC 0 . Let $Q \in NE$.

Want: $un(Q) \in AC^0$.

Choose $c \in \mathbb{N}$ and an NTM \mathbb{M} for Q in time $num(x)^c - 2|x|$

Assume p-HALT= \in paraAC 0 . Let $Q \in NE$.

Want: $un(Q) \in AC^0$.

Choose $c \in \mathbb{N}$ and an NTM \mathbb{M} for Q in time $num(x)^c - 2|x|$

Define M^* on the empty input:

1: guess $y \in \{0,1\}^*$ in exactly 2|y| steps.

2: run \mathbb{M} on y.

3: if M rejects, reject.

4: make dummy steps to complete $num(y)^c$ steps.

5: accept.

Assume p-HALT= \in paraAC 0 . Let $Q \in NE$.

Want: $un(Q) \in AC^0$.

Choose $c \in \mathbb{N}$ and an NTM \mathbb{M} for Q in time $\operatorname{num}(x)^c - 2|x|$

Define M^* on the empty input:

- 1: guess $y \in \{0, 1\}^*$ in exactly 2|y| steps.
- 2: run \mathbb{M} on y.
- 3: if M rejects, reject.
- 4: make dummy steps to complete $num(y)^c$ steps.
- 5: accept.

Then

 $1^{num(x)} \in un(Q) \iff \mathbb{M}^*$ accepts in exactly $num(x)^c + 1$ steps.

Since p-HALT $_{=} \in paraAC^0$ and \mathbb{M}^* is a fixed machine: r.h.s. is AC^0 .

 $p ext{-}\mathsf{HALT}_=$ is the hardest almost tally problem in paraNP.

need: workable notion of reduction that preserves para AC^0 .

need: workable notion of reduction that preserves paraAC⁰.

 $r: \{0,1\}^* \to \{0,1\}^*$ is an eventually definable reduction (Q,κ) to (Q',κ') if:

- (a) $|r(x)| \ge |x|^{\Omega(1)}$.
- (b) $\kappa' \circ r \leq f \circ \kappa$ for some computable $f : \mathbb{N} \to \mathbb{N}$.
- (c) $x \in Q \iff r(x) \in Q'$.
- (d) exist computable h, interpretation I st:

$$\mathcal{S}(x)^{\mathbf{I}} \cong \mathcal{S}(r(x)).$$

for every $x \in \{0, 1\}^*$ with $|x| \ge h(\kappa(x))$.

Lemma

This reducibility is transitive and preserves para AC^0 .

 (Q, κ) is almost tally if for some computable $f : \mathbb{N} \to \mathbb{N}$:

- $-Q \subseteq \left\{ \langle \mathbf{1}^n, x \rangle \mid n \in \mathbb{N}, x \in \{0, 1\}^* \right\}$
- $-|x| \le f(\kappa(\langle 1^n, x \rangle)).$
- p-HALT₌, p-HALT, p- Δ_0 -TRUTH are almost tally.

 (Q, κ) is almost tally if for some computable $f : \mathbb{N} \to \mathbb{N}$:

- $-Q \subseteq \left\{ \langle 1^n, x \rangle \mid n \in \mathbb{N}, x \in \{0, 1\}^* \right\}$
- $-|x| \le f(\kappa(\langle 1^n, x \rangle)).$
- p-HALT₌, p-HALT, p- Δ_0 -TRUTH are almost tally.

Lemma

For every almost tally problem in paraNP there is an eventually definable reduction to p-HALT $_{=}$.

 (Q, κ) is almost tally if for some computable $f : \mathbb{N} \to \mathbb{N}$:

$$-Q \subseteq \left\{ \langle 1^n, x \rangle \mid n \in \mathbb{N}, x \in \{0, 1\}^* \right\}$$

$$-|x| \le f(\kappa(\langle 1^n, x \rangle)).$$

• p-HALT₌, p-HALT, p- Δ_0 -TRUTH are almost tally.

Lemma

For every almost tally problem in paraNP there is an eventually definable reduction to p-HALT $_{=}$.

Corollary

 $NE \subseteq LINH$ iff every almost tally problem in paraNP is in paraAC⁰.

p- Δ_0 -TRUTH $\not\in$ para AC^0 .

Otherwise model-checking arithmetic is in para AC^0 :

 $p ext{-}\mathsf{MC}(L^\mathsf{r}_\mathsf{ar})$

Input: $n \geq 2$ in unary and an $L_{\rm ar}^{\rm r}$ -sentence φ .

Problem: $n \models \varphi$? Parameter: $k := |\varphi|$. p- Δ_0 -TRUTH $\not\in$ para AC^0 .

Otherwise model-checking arithmetic is in paraAC⁰:

 $p ext{-}\mathsf{MC}(L^\mathsf{r}_\mathsf{ar})$

Input: $n \geq 2$ in unary and an $L_{\rm ar}^{\rm r}$ -sentence φ .

Problem: $n \models \varphi$? Parameter: $k := |\varphi|$.

Thus there are a sentence *sat* and a computable $h: \mathbb{N} \to \mathbb{N}$ such that

$$n \models \varphi \iff \mathcal{S}(\langle 1^n, \varphi \rangle) \models sat$$

for all $n \ge h(num(\varphi))$.

p- Δ_0 -TRUTH $\not\in$ para \mathbf{AC}^0 .

Otherwise model-checking arithmetic is in para AC^0 :

 $p ext{-}\mathsf{MC}(L^\mathsf{r}_\mathsf{ar})$

Input: $n \ge 2$ in unary and an L_{ar}^{r} -sentence φ .

Problem: $n \models \varphi$? Parameter: $k := |\varphi|$.

Thus there are a sentence sat and a computable $h: \mathbb{N} \to \mathbb{N}$ such that

$$n \models \varphi \iff \mathcal{S}(\langle 1^n, \varphi \rangle) \models \mathsf{sat}$$

for all $n \ge h(num(\varphi))$.

Construct a L_{ar}^{r} -formula true(x) such that

$$n \models \varphi \iff n \models true(num(\varphi))$$

for all $n \geq h(num(\varphi))$.

p- Δ_0 -TRUTH $\not\in$ para AC^0 .

Then

$$\mathbb{N} \models \text{``}h(\textit{num}(\varphi)) \leq y\text{''} \rightarrow \left(\varphi^{< y} \leftrightarrow \textit{true}^{< y}(\textit{num}(\varphi)).\right)$$

p- Δ_0 -TRUTH \notin para AC^0 .

Then

$$\mathbb{N} \models \text{``}h(\mathsf{num}(\varphi)) \leq y\text{''} \rightarrow (\varphi^{< y} \leftrightarrow \mathsf{true}^{< y}(\mathsf{num}(\varphi)).)$$

Let M be nonstandard and $a \in M \setminus \mathbb{N}$. Then

$$M \models \varphi^{< a} \leftrightarrow true^{< a}(num(\varphi))$$

for all $L_{\rm ar}^{\rm r}$ -sentences φ .

Contradiction by standard diagonalization.

Upper bounds

Theorem

If p- Δ_0 -TRUTH \in paraNP, then NE $\not\subseteq$ LINH.

Upper bounds

Theorem

If p- Δ_0 -TRUTH \in paraNP, then NE $\not\subseteq$ LINH.

If p- Δ_0 -TRUTH \in FPT, then E $\not\subseteq$ LINH.

If p- Δ_0 -TRUTH \in paraNL, then NLINSPACE $\not\subseteq$ LINH.

If p- Δ_0 -TRUTH \in paraL, then LINSPACE $\not\subseteq$ LINH.

 $\mathsf{LINH} \subseteq \mathsf{LINSPACE} \subseteq \mathsf{NLINSPACE} \subseteq \mathsf{E} \subseteq \mathsf{NE}$

Question Does $I\Delta_0$ prove MRDP?

for every $\varphi(\bar{x}) \in \Delta_0$ there are terms $p(\bar{x}, \bar{y}), q(\bar{x}, \bar{y})$ st $I\Delta_0$ proves $\varphi(\bar{x}) \leftrightarrow \exists \bar{y} \ p(\bar{x}, \bar{y}) = q(\bar{x}, \bar{y}).$

Wilkie 1980 Then NP = coNP.

Gaifman, Dimitracopoulos 1982 $I\Delta_0$ +exp proves MRDP.

Question Does $I\Delta_0$ prove MRDP?

for every $\varphi(\bar{x}) \in \Delta_0$ there are terms $p(\bar{x}, \bar{y}), q(\bar{x}, \bar{y})$ st $I\Delta_0$ proves $\varphi(\bar{x}) \leftrightarrow \exists \bar{y} \ p(\bar{x}, \bar{y}) = q(\bar{x}, \bar{y}).$

Wilkie 1980 Then NP = coNP.

Gaifman, Dimitracopoulos 1982 $I\Delta_0$ +exp proves MRDP.

Conjecture $I\Delta_0$ proves MRDP for small numbers:

for every $\varphi(x) \in \Delta_0$ there are terms $p(x, \bar{y}), q(x, \bar{y})$ st $I\Delta_0$ proves $2^x \leq z \rightarrow (\varphi(x) \leftrightarrow \exists \bar{y} \ p(x, \bar{y}) = q(x, \bar{y})).$

Intuitively Much weaker than $I\Delta_0$ -provability.

Question Does $I\Delta_0$ prove MRDP?

for every $\varphi(\bar{x}) \in \Delta_0$ there are terms $p(\bar{x}, \bar{y}), q(\bar{x}, \bar{y})$ st $I\Delta_0$ proves $\varphi(\bar{x}) \leftrightarrow \exists \bar{y} \ p(\bar{x}, \bar{y}) = q(\bar{x}, \bar{y}).$

Wilkie 1980 Then NP = coNP.

Gaifman, Dimitracopoulos 1982 $I\Delta_0$ +exp proves MRDP.

Conjecture $I\Delta_0$ proves MRDP for small numbers:

for every $\varphi(x) \in \Delta_0$ there are terms $p(x, \bar{y}), q(x, \bar{y})$ st $I\Delta_0$ proves $2^x \leq z \rightarrow (\varphi(x) \leftrightarrow \exists \bar{y} \ p(x, \bar{y}) = q(x, \bar{y})).$

Intuitively Much weaker than $I\Delta_0$ -provability.

Theorem

Then $NE \not\subseteq LINH$.

Theorem Let T be a true, c.e. Π_1 -theory.

If T proves MRDP for small numbers, then NE $\not\subseteq$ LINH.

Theorem Let T be a true, c.e. Π_1 -theory.

If T proves MRDP for small numbers, then NE $\not\subseteq$ LINH.

Proof Parikh's Theorem implies:

for every $\varphi(x)$ there are $p(x,\bar{y}),q(x,\bar{y}),r(x,z)$ such that T proves

$$2^x = z \rightarrow (\varphi(x) \leftrightarrow \exists \overline{y} < r(x, z) p(x, \overline{y}) = q(x, \overline{y}))$$

Solve p- Δ_0 -TRUTH on input $\langle 1^n, \varphi(x) \rangle$:

- 1: compute p,q,r from φ as above. // since T is c.e..
- 2: guess $\bar{m} < r(n, 2^n)$. // length $O(|\bar{y}| \cdot |r| \cdot n)$
- 3: check $p(n,\bar{m})=q(n,\bar{m})$ // time poly $|p|\cdot |q|\cdot |r|\cdot n$

Hence p- Δ_0 -TRUTH \in paraNP, so NE $\not\subseteq$ LINH.

Relaxing uniformity

```
\mathsf{XAC}^0 contains (Q,\kappa) if every slice is in \mathsf{AC}^0.
```

$$XAC_{const}^{0}$$
 ... and depth independent of the slice.

para
$$AC^0 \subseteq XAC^0_{const} \subseteq XAC^0$$

Relaxing uniformity

 XAC^0 contains (Q,κ) if every slice is in AC^0 .

 XAC_{const}^{0} ... and depth independent of the slice.

para
$$AC^0 \subseteq XAC^0_{const} \subseteq XAC^0$$

Theorem

p-HALT $\in XAC^0_{const}$.

 $p\text{-HALT}_{=} \in \mathsf{XAC}^0_{const}$ iff $\mathsf{NE} \subseteq \mathsf{LINH}.$

 $p\text{-}\Delta_0\text{-}\mathsf{TRUTH} \in \mathsf{XAC}^0_{const}$ iff LINH collapses.

Problem comparison

$$p ext{-HALT}=$$

$$\uparrow$$

$$p ext{-HALT}$$

Corollary

 $p ext{-HALT} \equiv p ext{-HALT}$ unless $NE \subseteq LINH$.

Problem comparison

$$p ext{-HALT}_{=}$$
 $\not\equiv$ $p ext{-}\Delta_0 ext{-TRUTH}$ \uparrow $p ext{-HALT}$

Corollary

 $p ext{-HALT}_{=} \not\equiv p ext{-HALT}$ unless NE \subseteq LINH. $p ext{-HALT}_{=} \not\equiv p ext{-}\Delta_0 ext{-TRUTH}.$

Problem comparison

$$p ext{-SPEC}$$

$$\nearrow \qquad \nwarrow$$

$$p ext{-HALT}= \qquad \not\equiv \qquad p ext{-}\Delta_0 ext{-TRUTH}$$

$$\uparrow \qquad \qquad \qquad \uparrow$$

$$p ext{-HALT}$$

Corollary

 $p ext{-HALT}_{=} \not\equiv p ext{-HALT}$ unless NE \subseteq LINH. $p ext{-HALT}_{=} \not\equiv p ext{-}\Delta_0 ext{-TRUTH}.$

p-SPEC

Input: $n \in \mathbb{N}$ in unary and a first-order sentence φ .

Problem: does φ have a model of size n?

Parameter: $k := |\varphi|$.