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Motivations: Hilbert's program

Objective: Justify the use of the actual infinity in mathematics.

m Conservation: Every theorem about finite objects proved using
infinite objects can be proven without them.

m Consistency: Finitary mathematics can prove that infinitary
mathematics doesn’t lead to a contradiction.
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Motivations: Hilbert's program

Objective: Justify the use of the actual infinity in mathematics.

m Conservation: Every theorem about finite objects proved using
infinite objects can be proven without them.

m Consistency: Finitary mathematics can prove that infinitary
mathematics doesn’t lead to a contradiction.

m Godel (1931) : Both of these goals are unattainable.
m Partial results still possible.
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Reverse mathematics

Reverse mathematics : Framework

Framework : second-order arithmetic.
m Easy distinction between finite and infinite objects.
m Allow the use of computability theory tools.

m Most of everyday mathematics is still formalizable.
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Reverse mathematics

Base theory RCAq

Base theory: RCAq
m Robinson’s arithmetic Q
m AY-comprehension (The computable sets exists)
m X 9-induction (Every set of finite cardinality is bounded)

RCA( is conservative over ¥1-PA (Friedman) and I, conservative
over PRA (Parsons, Harrington)
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Reverse mathematics

The “Big Five”

Modulo RCAg, most theorems of ordinary mathematics are
equivalent to one the following theories (from weakest to strongest):
RCAg: constructive mathematics.
WKLg: compactness arguments.
ACAy: second-order version of Peano arithmetics.
ATRg: transfinite recursion.
I'I%—CA: impredicativism.
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Reverse mathematics

Nl — CAo

ATRg
Ramsey's theorem for |
pairs and two colors ACAq
escape this phenomenon. |

WKLy RT3

RCAo
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Ramsey's theorem

Finite Ramsey's theorem

For every 2-coloring of the
edges of Kg
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Ramsey's theorem

Finite Ramsey's theorem

There exists some
monochromatic copy of K3
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Ramsey's theorem

Infinite Ramsey's theorem

Let [X]? be the set of all subsets of X of cardinality 2.

Definition (Ramsey's theorem for pairs and two colors)

RT3 is the statement: “For every coloring f : [N]> — 2 there is an
infinite set H C N such that |f([H]?)] = 1".
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Ramsey's theorem

First-order consequences of RT3

m RCAg + RT3 1A (Hirst)
m RCAq + RT3 I£1X9 (Chong/Slaman/Yang)

m RT3 is Mi-conservative over IX3 4+ RCAg.
(Cholak/Jockusch/Slaman)

The first-order consequences of RT3 therefore lies between those of
Q + |A2 and Q =+ |22.
It is still open whether RT3 is M}-conservative over RCAg + A9

Quentin Le Houérou
I'Ig conservation of RTg



Introduction

[e]e]e] le}

Ramsey's theorem

First-order consequences of RT3

A Vﬂg formula is a formula of the form
(VX)(¥x)(3y)(¥2)0(X, x, y, z) with § AJ.

Theorem (Patey/Yokoyama)

RCAq + RT% is a Vﬂg—conservative extension of RCAy.

Furthermore, the proof is formalizable in PRA, hence
PRA F Con(Q +1X1) — Con(RCAq + RT3)
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Main theorem (Le Houérou/Levy Patey/Yokoyama)

RCAg + RT3 is a VIMJ-conservative extension of RCAq + IAY.
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Proof
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Outline of the proof

RT3 is VN9 conservative over RCAg + IAS.

Proof:
m Assume RCAg + IA9 I VXVx¢(X, x) for
(X, x) := JyVzAtI(X, x,y,z,t) a £J statement.

m By completeness, compactness and the Léwenheim-Skolem
theorem, there exists M = (M, S) = RCAq + 1A + —¢(A, a)
be a countable model with M nonstandard, and ae¢ M, A€ S

m From M, build a model M’ = RCAq + 1A + RT3 + —¢(A, a)
m Therefore RCAg + 1A + RT3 I/ YXVx¢(X)
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An initial segment | C M closed under successor is called a cut.
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Preserving RCAy

From a cut | C M, consider the model (/, Cod(M/I)) where
Cod(M/1) = {F NI : F finite set of M}

m If | is stable by multiplication then / &= Q.
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Preserving RCAy

From a cut | C M, consider the model (/, Cod(M/I)) where
Cod(M/1) = {F NI : F finite set of M}

m If | is stable by multiplication then / &= Q.
m (/,Cod(M/1)) &= A9-comprehension.
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Preserving RCAy

From a cut | C M, consider the model (/, Cod(M/I)) where
Cod(M/1) = {F NI : F finite set of M}

m If | is stable by multiplication then / &= Q.
m (/,Cod(M/1)) &= A9-comprehension.
m For (/,Cod(M/I)) to be a model of IZ9, we want every

M-finite set F of cardinality € / to not be cofinal in /. A cut
verifying that is called semi-regular.
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Every instance of RT3 in (/, Cod(M/1)) is obtained from a finite
instance f : [b]?> — 2 that is restricted to [/]?.

fo[o]?—2 b
L L L r
F 1 ¥ L
0 )
N - - finite
/ Ramsey's
theorem
f monochromatic on [H]? b
= ——— {
0

Problem : It may be impossible to have H N[ cofinal in /
We need a stronger version of Ramsey's theorem that put more

weight on small elements.
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a-largeness

Definition : a-large sets

Aset X C¢in Niis
m WO-large if X # 0.
m (™) Jarge if X\ min X is (w” - min X)-large
m w" - k-large if there are k w"-large subsets of X

Xo< X1 <+ < Xi1

where A < B means that for alla€ Aand b€ B, a < b.
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m X is w0 - k-large iff |X| > k
m X is wl-large iff |[X| > min X

m X is w?large iff X = {min X} U X1 U - U Xpin x with each
X; w'-large.

Theorem: Kotodziejczyk/Yokoyama

Let X be w3 -large and f : [X]? — 2 a coloring. There exists
some w"-large subset Y of X such that f is homogeneous on [Y]?.
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Parson’s theorem

If for some A8 formula 1) we have:
RCAo F VX(X is infinite — (3F Cein X)3Iy(y, F))
Then there exists some n € w such that:

1X0 - VZ(Z is w-large — IF C Z3y < max Zy(y, F))

Proposition

RCAq F (Va)(WF(w?) —
every infinite set contains some w?-large subset)
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Preserving a M3 formula

Assume (M, S) | (Vy)(32)0(y, 2).

By A%-comprehension, let X = {xp < x; < ...} infinite such that
(Vy < xi)(3z < xi+1)0(y, z) for every i.

By overflow, let a non-standard such that (M, S) &= WF(w309%)
By RCAg, let Y C X be w3%%-large.

I will be defined as | J,.[0,min Y,] for Y =Yy D Y1 D ... with
Y; w39 '_large and min Y11 > min Y;.
Finally, (1, Cod(M/1)) = (Vy)(32)6(y, 2)
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Preserving a M3 formula

Assume (M, S) |= (Yy)(3z)(Vt)0(y, z, t).

Not possible to build X = {xg < x; < ...} infinite such that
(Vy < xi)(3z < xi+1)(Vt)8(y, z, t): this requires

¥ 9-comprehension.

Definition: #-apart

Two finite sets A < B are #-apart if:

(Vy < maxA)(3z < min B)(Vt < maxB)f#(y, z, t)
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Definition : a-large(f) sets

A set X Cgin Niis
m wO-large(0) if X # 0.
m W™ Jarge(0) if X \ min X is (w" - min X)-large(8)
m w" - k-large(0) if there are k w"-large(6) subsets of X that are
pairwise f-apart.

Xo< X1 < -+ < Xi_1

For every standard n, RCAg + 1A + (Vy)(3z)(Vt)0(y, z, t) proves
that every infinite set contain some w"-large(f) set.
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Proposition

Let X be w(6°t1)" Jarge(f) and f : [X]2 — 2 a coloring. There
exists some w"-large(f) subset Y of X such that f is homogeneous
on [Y]2.
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Appendix

Proposition: Kotodziejczyk/Yokoyama

If Y is w"1-large and Y = Yy U Y1, then there exists some i < 2
such that Y; is w"-large.

Proposition: Le Houérou/Levy Patey/Yokoyama

For every n, there is a A8 formula @, a set Y that is w2”_1—large(0)
and a partition Y = Yy U Y7 such that Yy and Y7 are not
w"-large(0).
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