
Infinite Time Turing Machines for elementary
proofs on recursive reals
Journée des Arithmétiques Faibles

Kenza Benjelloun
Joint work with Bruno Durand

Université de Côte d’Azur

Università Degli Studi di Trieste

11 septembre 2024



Outline of talk

Preliminary notions

Infinite Time Turing machines and algorithmic tools

Our elementary proof of Harrison’s theorem

Prooving that our proof is elementary



Table of Contents

Preliminary notions

Infinite Time Turing machines and algorithmic tools

Our elementary proof of Harrison’s theorem

Prooving that our proof is elementary



Order relations

Z :
-5 -4 -3 -2 -1 0 1 2 3 4 5

infinite descending chain

For a, b ∈ Z, a natural relation : a <Z b
We denote orders by ≺ here a ≺ b ⇐⇒ a <Z b

This is an order (strict)
◦ Anti-reflexive (x ⊀ x)
◦ Linear (any two elements are comparable)
◦ Transitive (∀abc a ≺ b ∧ b ≺ c ⇒ a ≺ c)
× Not a well-order – Z has no least element
• well-orders : any non-empty subset has a least element
• well-order ⇐⇒ no infinite descending chain (Zorn - Choice)
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Orders and real codes
◦ Ordering countable sequences of elements…
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◦ The objects we order are represented by integers
◦ Encoding pairs : 〈a, b〉 is an integer too. e.g. using Cantor’s pairing
function :

〈a, b〉 = (a+ b)(a+ b+ 1)

2
+ b

◦ We encode relations by reals

x = 0100010101010101...0 ⇐⇒ (x⟨a,b⟩ = 1 ⇔ a ≺ b)

−→ This real encodes a relation, an order, an ordinal
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Ordinals encoded as reals

Let x be a real code,
• x is total if all pairs of integers n = 〈a, b〉 are comparable
• the domain of x is the set of integers appearing in at least one
comparable pair a ≺x b of the order encoded by x
◦ well-orders are always comparable – an ordinal is a class of well
orders of same length (length is called ordinal type).

Proposition
We can recursively transform any (not-total) enumerable (infinite) code into
a total enumerable code
• x is a recursive real if n 7→ xn is computable by a Turing machine
• x is an enumerable real if 1’s in x are enumerable by a Turing
machine
• α is a recursive ordinal if it has at least one recursive encoding
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recursive ordinals

Recursive ordinals form an initial segment of countable ordinals :

sup
α∈REC

α = ωCK
1

ωCK
1

non-recursive

∅

ω1recursive non-countable

Theorem (Spector Theorem, 1958)
The order type of a Σ1

1 well-order is less than ωCK
1

→ collapse theorem
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Collapse on recursive ordinals

Theorem (First order improved version)
If an ordinal α is arithmetic, then it is also recursive. Furthermore, the
transformation of the formula that caracterizes α into a program (for
ω · α) is recursive.

→ arithmetic ordinals are those ordinals encoded by a real defined
by an arithmetic formula
→ “α is also recursive” means that there exists another real that
codes a well-order of same length α which is recursive

later we’ll come back on the collapse and its role in our construction
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Infinite Time Turing Machines definition (ITTM)
- Developped by Joel David Hamkins and Andy Lewis in 2000
- Analog of a Turing machine but with ordinal time
- Tapes of size ω

Ordinal time :
(1) Initial point : ∅
(2) Successor case : α ∪ {α}
(3) Limit case : supβ<α =

∪
β ∈ α

ITTM computation steps :
(1) Starting time : 0, initial state q0
(2) Successor case : normal Turing machine operation
(3) Limit case :

⋆ limsup on all cells (alphabet {0, 1})
⋆ rewind the head at the begining of the tape
⋆ goto limit state qL
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Automaton representation

q0start qL

H

0,0,→

1,0,→
1,1,→

0,1,·

Figure – States of an ITTM
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Flash algorithm on an ITTM

0 0 0 0 0 0 …Computation on work tape

0 0 0 0 0 0 …flash at step ω

1 0 0 0 0 0 …ω + 1

0 0 0 0 0 0 …ω + 2

1 0 0 0 0 0 …halt in ω2

Figure – Evolution of the work tape of an ITTM

• input : a real that we place on a tape
• output : a real that we read from a tape
• an ITTM computes a function from R to R
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Counting through orders

Definition (clockable ordinal)
α is a clockable ordinal if and only if ∃ an ITTM µ such that the
computation of µ (on empty input 000 . . .) halts in exactly α steps.

Beware : clockable ordinals do not form a segment. You can have
α < β with β clockable and α not.

Theorem (Count-Through Theorem - Hamkins and Lewis, 2000)
There exists an ITTM that, given the real representation of a linear
order, decides if the order is a well order in time α+ ω where α is the
length of the w.o.i.s (well order initial segment).
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Our construction
• We design an ITTM µ that takes as input a program of a Turing

machine n
◦ µ simulates the TM number n and checks whether it is the

program for a recursive real x
Turing machine simulation by ITTM - time ω

◦ If yes, µ checks that x codes a linear order
Simple algorithmics on ITTM, timers - time ω

◦ If yes, µ counts through the order to check whether the order is a
well order

Count-Through Theorem - time α+ ω

• We ITTM-compute µ(0), µ(1), µ(2), . . .
• Let us suppose now that all such α are recursive. We conclude

that our computation halts in exactly ωCK
1

• ωCK
1 is not clockable ⇒ contradiction !!

beware of this high level argument
• We conclude that there exists a recursive linear order the w.o.i.s

of which has ordinal type ωCK
1 and we prove Harrison’s theorem
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Pseudo-Well Orderings and Harrison

Definition (pseudo-well ordering)
A pseudo-well ordering is a linear order that has no infinite
arithmetic descending chain.

◦ In other terms, one cannot arithmetically differentiate a
pseudo-well ordering from a well-order

◦ Recursive pseudo-well ordering have a w.o.i.s of length ωCK
1

(Gandy - easier proof by ITTM)
◦ A recursive linear order the w.o.i.s of which has length ωCK

1 is a
recursive pseudo-well ordering

◦ Harrison proved in 1968 that there exists recursive pseudo-well
orderings

◦ We call “Harrison real” a recursive real encoding a pseudo-well
ordering

15 / 28



Insight : Pseudo-well orderings and Harrison’s reals challenge
our intuitions about linear orders and the nature of recursive
sets.

ωCK
1

ill order

∅

Q
recursive

Figure – An example of a recursive pseudo-well ordering
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Some formulations of Harrison’s theorem

Theorem (Original formulation)
There exists a recursive linear order of which the ordinal type of the
w.o.i.s is exactly ωCK

1 .

Theorem (First order formulation)
There exists a recursive real that codes a linear order so that any
recursive ordinal is a prefix of this order.
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Motivations

Original proof and classical proofs use descriptive set theory and
computability results such as

Σ1
1 6= Π1

1

they are rather simple but lays in the analytic hierarchy.

Some other second order proofs exist, for instance using
Kleene-Brouwer order on a tree without arithmetic infinite path.

Our proof is bottom-up (”constructive”), more elementary.
−→ We prove this now.
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Introduction to ACA0

Our goal is to place our proof in ACA0

ACA0 stands for Arithmetical Comprehension Axiom
It allows comprehension (existence) of sets defined by
arithmetical formulas
It contains basic Peano arithmetics RCA0
More formally : in ACA0, for all arithmetical formula φ(n),

we have a set A = {n | φ(n)}
ACA0 deals well with recursive sets and computations that
involve recursive ordinals

21 / 28



On all known proofs

The result Σ1
1 6= Π1

1 states that there exists a Σ1
1 set of reals that

is not Π1
1.

Σ1
1 : Sets definable by an existential quantifier over all

arithmetical predicates
Π1

1 : Sets definable by a universal quantifier over all arithmetical
predicates
This is a separation result in the analytical hierarchy

22 / 28



Why ACA0 is Too Weak to Prove Σ1
1 6= Π1

1

◦ ACA0 only provides comprehension for arithmetical formulas
◦ Σ1

1 and Π1
1 sets require quantification over all sets of natural

numbers, which is beyond the arithmetical realm
◦ the separation Σ1

1 6= Π1
1 requires constructing a set that cannot

be defined by any arithmetical formula
◦ ACA0 lacks the necessary strength to express such higher-level

definitions, rendering this theory too weak to contain the
original proofs

◦ It seems that TRA is necessary, and so the proof by Harrison and
others reside in ATR0

23 / 28



our ITTM computations

◦ µ simulates the TM number n and checks whether it is the program for
a recursive real x

Turing machine simulation by ITTM - time ω
◦ If yes, µ checks that x codes a linear order

Simple algorithmics on ITTM, timers - time ω
◦ If yes, µ counts through the order to check whether the order is a well

order
Count-Through Theorem - time α+ ω

• As for Turing machines, there is an equivalence between ITTM
computations and some class of formula

• If an ITTM halts in time α, then it computes a function in Σ1(Lα).
Lα is Gödel constructible set (Hamkins and Lewis 2000)
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the collapse

◦ We have used the fact that all ordinals below ωCK
1 are recursive –

thus our ITTM enumerates them all, and make computation
steps at each stage

◦ We need our first-order recursive version of the collapse theorem

◦ If an ordinal α is arithmetic, then it is also recursive.
Furthermore, the transformation of the formula that caracterizes
α into a program (for ω · α) is recursive

• This result was already known in recursion theory, but we found
no first order proof in litterature. We prove this using a subtle
priority argument construction on orders.
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our total computation time

• We remark that a Σ1 sum of recursive ordinals is also recursive

• We use the fact that no ITTM may halt in ωCK
1 . The classical

justification is that ωCK
1 is an admissible ordinals and that halting

of an ITTM would contradict admissibility. This argument is too
high !

◦ We replace the last argument by the combination of two facts :
ITTM computations in time β lays in Σ1(Lβ)
a Σ1 sum of recursive ordinals is also recursive
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ITTM algorithmic argument

τ =
∑
n∈ω

τn

◦ For all recursive ordinals β, there exists a TM b which produces
the code xβ

◦ β ≤ τb ≤ ωCK
1 ⇒ ωCK

1 ≤ τ

◦ ∀n τn is Σ1-defined over Lτn
◦ µ (n) computation is Σ1 (Lτn) −→ which is arithmetical
◦ By the collapse theorem, τn is recursive and τ = ωCK

1

Quod erat demonĆrandum

Our entire proof resides in ACA0
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the end

Vielen Dank fr Ihre Aufmerksamkeit

Merci pour votre attention

T¯nk you for li<ening

28 / 28


	Preliminary notions
	Infinite Time Turing machines and algorithmic tools
	Our elementary proof of Harrison's theorem
	Prooving that our proof is elementary

